Currently available clocks in
EstimAge are listed in the Table below, with accompanying tissue, age range of applicability, training technology, reference.
We encourage authors to submit novel, peer reviewed, software-equipped clocks to our webservice via the contact page.
| Name |
Tissue§ |
Life Phase§§ |
Technology |
Publication |
| Multi-Tissue (Years) | | | |
| EPM | Tissues; D014024 | lifespan | HM450 | Snir et al., 2019 |
| Horvath13 | Tissues; D014024 | lifespan | HM27, HM450 | Horvath, 2013 |
| PhenoAge | Tissues; D014024 | adult | HM450, HMEPIC | Levine et al., 2018 |
Zhang19.blupred Zhang19.enpred | Tissues; D014024 | lifespan | HM450, HMEPIC | Zhang et al., 2019 |
| Tissue-specific (Years) | | | |
| CorticalClock | Prefrontal Cortex; D017397 | lifespan | HM450, HMEPIC | Shireby et al., 2020 |
| Hannum13 | Blood; D001769 | adult | HM450 | Hannum et al., 2013 |
| Horvath18 | Blood; D001769 Endothelial cells; D042783 Mouth Mucosa; D009061 Saliva; D012463 Skin; D012867 | lifespan | HM450, HMEPIC | Horvath et al., 2018 |
| MEAT | Muscle, Skeletal; D018482 | adult | HM27, HM450, HMEPIC | Voisin et al., 2020 |
| PedBE | Mouth Mucosa; D009061
| pediatric | HM450, HMEPIC | McEwen et al., 2020 |
| Gestational (Weeks) | | | |
| Bohlin16 | Fetal Blood; D005312 | foetal | HM450 | Bohlin et al., 2016 |
| Knight16 | Fetal Blood; D005312 | foetal | HM27, HM450 | Knight et al., 2016 |
Lee19.RPC Lee19.CPC Lee19.rRPC | Placenta; D010920 | foetal | HM450 | Lee et al., 2019 |
| Mayne17 | Placenta; D010920 | foetal | HM27, HM450 | Mayne et al., 2017 |
| Forensic Applications (Years) | | | |
| FAradas16 | Blood; D001769 | adult | HM450, EpiTYPER* | Freire-Aradas et al., 2016 |
| ZPiekarska15 | Blood; D001769 | lifespan | Bisulfite conversion+ pyrosequencing assays** | Zbieć-Piekarska et al., 2015 |
| Miscellaneous non-years counting clocks (Cell Cycles, kilobases) | | | |
| EpiTOC° | Neoplasms; D009369 | adult | HM450 | Yang et al., 2016 |
| MiAge° | Neoplasms; D009369 | adult | HM450 | Youn and Wang, 2018 |
| DNAmTL°° | Blood; D001769 | adult | HM450, HMEPIC | Lu et al., 2019 |
Table. List of EstimAge available clocks. §MeSH: MeSH heading; Unique ID. §§Pediatric 0-18; Adult 18-80. °Mitotic clock (mitotic age=total number of lifetime cell divisions). °°Telomere length clock. *Based on the following CpGs: ELOVL2_C7, C1orf132_C1, TRIM59_C7, KLF14_C1, FHL2_C2. **Based on the following CpGs: CR_1_CpG_9, CR_2_CpG_3, CR_4_CpG_27.28.29, CR_12.1_CpG_3, CR_13_CpG_2, CR_21_CpG_11, CR_23_CpG_3.
References
Bohlin,J., Håberg,S.E., Magnus,P., Reese,S.E., Gjessing,H.K., Magnus,M.C., Parr,C.L., Page,C.M., London,S.J. and Nystad,W. (2016)
Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biology, 17, 207.
https://doi.org/10.1186/s13059-016-1063-4
Freire-Aradas, A, Mosquera-Miguel, A., Girón-Santamaría, L., Gómez-Tato, A., Casares de Cal, M., Álvarez-Dios, J., Ansede-Bermejoc, J., Torres-Español, M., Schneiderd, P.M., Pospiech, E., Branickif, W., Carracedo, A., Lareu, M.V. (2016)
Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. Forensic Sci. Int. Genet. 24, 65–74.
https://doi.org/10.1016/j.fsigen.2016.06.005
Hannum,G., Guinney,J., Zhao,L., Zhang,L., Hughes,G., Sadda,S., Klotzle,B., Bibikova,M., Fan,J.B., Gao,Y., et al. (2013)
enome-wide methylation profiles reveal quantitative views of human aging ratesG. Molecular cell, 49, 359–367.
https://doi.org/10.1016/j.molcel.2012.10.016
Horvath, S. (2013)
DNA methylation age of human tissues and cell types. Genome Biol 14, R115.
https://doi.org/10.1186/gb-2013-14-10-r115
Horvath, S., Oshima, J., Martin, G.M., Lu, A.T., Quach, A., Cohen, H., Felton, S., Matsuyama, M., Lowe, D., Kabacik, S., Wilson, J.G., Reiner, A.P., Maierhofer, A., Flunkert, J., Aviv, A., Hou, L., Baccarelli, A.A., Li, Y., Stewart, J.D., Whitsel, E.A., Ferrucci, L., Matsuyama, S., Raj, K. (2018)
Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 10, 1758–1775.
https://doi.org/10.18632/aging.101508
Knight, A.K., Craig, J.M., Theda, C., Bækvad-Hansen, M., Bybjerg-Grauholm, J., Hansen, C.S., Hollegaard, M.V., Hougaard, D.M., Mortensen, P.B., Weinsheimer, S.M., Werge, T.M., Brennan, P.A., Cubells, J.F., Newport, D.J., Stowe, Z.N., Cheong, J.L.Y., Dalach, P., Doyle, L.W., Loke, Y.J., Baccarelli, A.A., Just, A.C., Wright, R.O., Téllez-Rojo, M.M., Svensson, K., Trevisi, L., Kennedy, E.M., Binder, E.B., Iurato, S., Czamara, D., Räikkönen, K., Lahti, J.M.T., Pesonen, A.-K., Kajantie, E., Villa, P.M., Laivuori, H., Hämäläinen, E., Park, H.J., Bailey, L.B., Parets, S.E., Kilaru, V., Menon, R., Horvath, S., Bush, N.R., LeWinn, K.Z., Tylavsky, F.A., Conneely, K.N., Smith, A.K. (2016)
An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 17, 206.
https://doi.org/10.1186/s13059-016-1068-z
Lee,Y., Choufani,S., Weksberg,R., Wilson,S.L., Yuan,V., Burt,A., Marsit,C., Lu,A.T., Ritz,B., Bohlin,J., et al. (2019)
Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging (Albany NY), 11, 4238–4253.
https://doi.org/10.18632/aging.102049
Levine, M.E., Lu,A.T., Quach,A., Chen,B.H., Assimes,T.L., Bandinelli,S., Hou,L., Baccarelli,A.A., Stewart,J.D., Li,Y., et al. (2018)
An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10, 573–591.
https://doi.org/10.18632/aging.101414
Lu,A.T., Seeboth,A., Tsai,P.-C., Sun,D., Quach,A., Reiner,A.P., Kooperberg,C., Ferrucci,L., Hou,L., Baccarelli,A.A., et al. (2019)
DNA methylation-based estimator of telomere length. Aging (Albany NY), 11, 5895–5923.
https://doi.org/10.18632/aging.102173
Mayne,B.T., Leemaqz,S.Y., Smith,A.K., Breen,J., Roberts,C.T. and Bianco-Miotto,T. (2017) Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation. Epigenomics, 9, 279–289. https://doi.org/10.2217/epi-2016-0103
McEwen, L.M., O’Donnell, K.J., McGill, M.G., Edgar, R.D., Jones, M.J., MacIsaac, J.L., Lin, D.T.S., Ramadori, K., Morin, A., Gladish, N., Garg, E., Unternaehrer, E., Pokhvisneva, I., Karnani, N., Kee, M.Z.L., Klengel, T., Adler, N.E., Barr, R.G., Letourneau, N., Giesbrecht, G.F., Reynolds, J.N., Czamara, D., Armstrong, J.M., Essex, M.J., de Weerth, C., Beijers, R., Tollenaar, M.S., Bradley, B., Jovanovic, T., Ressler, K.J., Steiner, M., Entringer, S., Wadhwa, P.D., Buss, C., Bush, N.R., Binder, E.B., Boyce, W.T., Meaney, M.J., Horvath, S., Kobor, M.S. (2020)
The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc. Natl. Acad. Sci. U. S. A. 117, 23329–23335.
https://doi.org/10.1073/pnas.1820843116
Shireby,G.L., Davies,J.P., Francis,P.T., Burrage,J., Walker,E.M., Neilson,G.W.A., Dahir,A., Thomas,A.J., Love,S., Smith,R.G., et al. (2020)
Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. Brain, 143, 3763–3775.
https://doi.org/10.1093/brain/awaa334
Snir, S., Farrell, C., Pellegrini, M. (2019)
Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926.
https://doi.org/10.1080/15592294.2019.1623634
Voisin, S., Harvey, N.R., Haupt, L.M., Griffiths, L.R., Ashton, K.J., Coffey, V.G., Doering, T.M., Thompson, J.-L.M., Benedict, C., Cedernaes, J., Lindholm, M.E., Craig, J.M., Rowlands, D.S., Sharples, A.P., Horvath, S., Eynon, N. (2020)
An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle 11, 887–898.
https://doi.org/10.1002/jcsm.12556
Yang, Z., Wong, A., Kuh, D., Paul, D.S., Rakyan, V.K., Leslie, R.D., Zheng, S.C., Widschwendter, M., Beck, S., Teschendorff, A.E., (2016)
Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17, 205.
https://doi.org/10.1186/s13059-016-1064-3
Youn, A., Wang, S. (2018)
The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types. Epigenetics 13, 192–206.
https://doi.org/10.1080/15592294.2017.1389361
Zbieć-Piekarska, R., Spólnicka, M., Kupiec, T., Parys-Proszek, A., Makowska, Ż., Pałeczka, A., Kucharczyk, K., Płoski, R., Branicki, W. (2015)
Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet. 17, 173–179.
https://doi.org/10.1016/j.fsigen.2015.05.001
Zhang, Q., Vallerga, C.L., Walker, R.M., Lin, T., Henders, A.K., Montgomery, G.W., He, J., Fan, D., Fowdar, J., Kennedy, M., Pitcher, T., Pearson, J., Halliday, G., Kwok, J.B., Hickie, I., Lewis, S., Anderson, T., Silburn, P.A., Mellick, G.D., Harris, S.E., Redmond, P., Murray, A.D., Porteous, D.J., Haley, C.S., Evans, K.L., McIntosh, A.M., Yang, J., Gratten, J., Marioni, R.E., Wray, N.R., Deary, I.J., McRae, A.F., Visscher, P.M. (2019)
Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54.
https://doi.org/10.1186/s13073-019-0667-1