Image not found



Currently available clocks in EstimAge are listed in the Table below, with accompanying tissue, age range of applicability, training technology, reference. We encourage authors to submit novel, peer reviewed, software-equipped clocks to our webservice via the contact page.

Name Tissue§ Life Phase§§ Technology Publication
Multi-Tissue (Years)
EPMTissues; D014024lifespanHM450Snir et al., 2019
Horvath13Tissues; D014024lifespanHM27, HM450Horvath, 2013
PhenoAgeTissues; D014024adultHM450, HMEPICLevine et al., 2018
Zhang19.blupred
Zhang19.enpred
Tissues; D014024lifespanHM450, HMEPICZhang et al., 2019
Tissue-specific (Years)
CorticalClockPrefrontal Cortex; D017397lifespanHM450, HMEPICShireby et al., 2020
Hannum13Blood; D001769adultHM450Hannum et al., 2013
Horvath18Blood; D001769
Endothelial cells; D042783
Mouth Mucosa; D009061
Saliva; D012463
Skin; D012867
lifespanHM450, HMEPICHorvath et al., 2018
MEATMuscle, Skeletal; D018482adultHM27, HM450, HMEPICVoisin et al., 2020
PedBEMouth Mucosa; D009061
pediatricHM450, HMEPICMcEwen et al., 2020
Gestational (Weeks)
Bohlin16Fetal Blood; D005312foetalHM450Bohlin et al., 2016
Knight16Fetal Blood; D005312foetalHM27, HM450Knight et al., 2016
Lee19.RPC
Lee19.CPC
Lee19.rRPC
Placenta; D010920foetalHM450Lee et al., 2019
Mayne17Placenta; D010920foetalHM27, HM450Mayne et al., 2017
Forensic Applications (Years)
FAradas16Blood; D001769adultHM450, EpiTYPER*Freire-Aradas et al., 2016
ZPiekarska15Blood; D001769lifespanBisulfite conversion+
pyrosequencing assays**
Zbieć-Piekarska et al., 2015
Miscellaneous non-years counting clocks (Cell Cycles, kilobases)
EpiTOC°Neoplasms; D009369adultHM450Yang et al., 2016
MiAge°Neoplasms; D009369 adultHM450Youn and Wang, 2018
DNAmTL°°Blood; D001769adultHM450, HMEPICLu et al., 2019
Table. List of EstimAge available clocks. §MeSH: MeSH heading; Unique ID. §§Pediatric 0-18; Adult 18-80. °Mitotic clock (mitotic age=total number of lifetime cell divisions). °°Telomere length clock. *Based on the following CpGs: ELOVL2_C7, C1orf132_C1, TRIM59_C7, KLF14_C1, FHL2_C2. **Based on the following CpGs: CR_1_CpG_9, CR_2_CpG_3, CR_4_CpG_27.28.29, CR_12.1_CpG_3, CR_13_CpG_2, CR_21_CpG_11, CR_23_CpG_3.


References

Bohlin,J., Håberg,S.E., Magnus,P., Reese,S.E., Gjessing,H.K., Magnus,M.C., Parr,C.L., Page,C.M., London,S.J. and Nystad,W. (2016) Prediction of gestational age based on genome-wide differentially methylated regions. Genome Biology, 17, 207. https://doi.org/10.1186/s13059-016-1063-4

Freire-Aradas, A, Mosquera-Miguel, A., Girón-Santamaría, L., Gómez-Tato, A., Casares de Cal, M., Álvarez-Dios, J., Ansede-Bermejoc, J., Torres-Español, M., Schneiderd, P.M., Pospiech, E., Branickif, W., Carracedo, A., Lareu, M.V. (2016) Development of a methylation marker set for forensic age estimation using analysis of public methylation data and the Agena Bioscience EpiTYPER system. Forensic Sci. Int. Genet. 24, 65–74. https://doi.org/10.1016/j.fsigen.2016.06.005

Hannum,G., Guinney,J., Zhao,L., Zhang,L., Hughes,G., Sadda,S., Klotzle,B., Bibikova,M., Fan,J.B., Gao,Y., et al. (2013) enome-wide methylation profiles reveal quantitative views of human aging ratesG. Molecular cell, 49, 359–367. https://doi.org/10.1016/j.molcel.2012.10.016

Horvath, S. (2013) DNA methylation age of human tissues and cell types. Genome Biol 14, R115. https://doi.org/10.1186/gb-2013-14-10-r115

Horvath, S., Oshima, J., Martin, G.M., Lu, A.T., Quach, A., Cohen, H., Felton, S., Matsuyama, M., Lowe, D., Kabacik, S., Wilson, J.G., Reiner, A.P., Maierhofer, A., Flunkert, J., Aviv, A., Hou, L., Baccarelli, A.A., Li, Y., Stewart, J.D., Whitsel, E.A., Ferrucci, L., Matsuyama, S., Raj, K. (2018) Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging 10, 1758–1775. https://doi.org/10.18632/aging.101508

Knight, A.K., Craig, J.M., Theda, C., Bækvad-Hansen, M., Bybjerg-Grauholm, J., Hansen, C.S., Hollegaard, M.V., Hougaard, D.M., Mortensen, P.B., Weinsheimer, S.M., Werge, T.M., Brennan, P.A., Cubells, J.F., Newport, D.J., Stowe, Z.N., Cheong, J.L.Y., Dalach, P., Doyle, L.W., Loke, Y.J., Baccarelli, A.A., Just, A.C., Wright, R.O., Téllez-Rojo, M.M., Svensson, K., Trevisi, L., Kennedy, E.M., Binder, E.B., Iurato, S., Czamara, D., Räikkönen, K., Lahti, J.M.T., Pesonen, A.-K., Kajantie, E., Villa, P.M., Laivuori, H., Hämäläinen, E., Park, H.J., Bailey, L.B., Parets, S.E., Kilaru, V., Menon, R., Horvath, S., Bush, N.R., LeWinn, K.Z., Tylavsky, F.A., Conneely, K.N., Smith, A.K. (2016) An epigenetic clock for gestational age at birth based on blood methylation data. Genome Biol. 17, 206. https://doi.org/10.1186/s13059-016-1068-z

Lee,Y., Choufani,S., Weksberg,R., Wilson,S.L., Yuan,V., Burt,A., Marsit,C., Lu,A.T., Ritz,B., Bohlin,J., et al. (2019) Placental epigenetic clocks: estimating gestational age using placental DNA methylation levels. Aging (Albany NY), 11, 4238–4253. https://doi.org/10.18632/aging.102049

Levine, M.E., Lu,A.T., Quach,A., Chen,B.H., Assimes,T.L., Bandinelli,S., Hou,L., Baccarelli,A.A., Stewart,J.D., Li,Y., et al. (2018) An epigenetic biomarker of aging for lifespan and healthspan. Aging (Albany NY), 10, 573–591. https://doi.org/10.18632/aging.101414

Lu,A.T., Seeboth,A., Tsai,P.-C., Sun,D., Quach,A., Reiner,A.P., Kooperberg,C., Ferrucci,L., Hou,L., Baccarelli,A.A., et al. (2019) DNA methylation-based estimator of telomere length. Aging (Albany NY), 11, 5895–5923. https://doi.org/10.18632/aging.102173

Mayne,B.T., Leemaqz,S.Y., Smith,A.K., Breen,J., Roberts,C.T. and Bianco-Miotto,T. (2017) Accelerated placental aging in early onset preeclampsia pregnancies identified by DNA methylation. Epigenomics, 9, 279–289. https://doi.org/10.2217/epi-2016-0103

McEwen, L.M., O’Donnell, K.J., McGill, M.G., Edgar, R.D., Jones, M.J., MacIsaac, J.L., Lin, D.T.S., Ramadori, K., Morin, A., Gladish, N., Garg, E., Unternaehrer, E., Pokhvisneva, I., Karnani, N., Kee, M.Z.L., Klengel, T., Adler, N.E., Barr, R.G., Letourneau, N., Giesbrecht, G.F., Reynolds, J.N., Czamara, D., Armstrong, J.M., Essex, M.J., de Weerth, C., Beijers, R., Tollenaar, M.S., Bradley, B., Jovanovic, T., Ressler, K.J., Steiner, M., Entringer, S., Wadhwa, P.D., Buss, C., Bush, N.R., Binder, E.B., Boyce, W.T., Meaney, M.J., Horvath, S., Kobor, M.S. (2020) The PedBE clock accurately estimates DNA methylation age in pediatric buccal cells. Proc. Natl. Acad. Sci. U. S. A. 117, 23329–23335. https://doi.org/10.1073/pnas.1820843116

Shireby,G.L., Davies,J.P., Francis,P.T., Burrage,J., Walker,E.M., Neilson,G.W.A., Dahir,A., Thomas,A.J., Love,S., Smith,R.G., et al. (2020) Recalibrating the epigenetic clock: implications for assessing biological age in the human cortex. Brain, 143, 3763–3775. https://doi.org/10.1093/brain/awaa334

Snir, S., Farrell, C., Pellegrini, M. (2019) Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926. https://doi.org/10.1080/15592294.2019.1623634

Voisin, S., Harvey, N.R., Haupt, L.M., Griffiths, L.R., Ashton, K.J., Coffey, V.G., Doering, T.M., Thompson, J.-L.M., Benedict, C., Cedernaes, J., Lindholm, M.E., Craig, J.M., Rowlands, D.S., Sharples, A.P., Horvath, S., Eynon, N. (2020) An epigenetic clock for human skeletal muscle. J. Cachexia Sarcopenia Muscle 11, 887–898. https://doi.org/10.1002/jcsm.12556

Yang, Z., Wong, A., Kuh, D., Paul, D.S., Rakyan, V.K., Leslie, R.D., Zheng, S.C., Widschwendter, M., Beck, S., Teschendorff, A.E., (2016) Correlation of an epigenetic mitotic clock with cancer risk. Genome Biol. 17, 205. https://doi.org/10.1186/s13059-016-1064-3

Youn, A., Wang, S. (2018) The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types. Epigenetics 13, 192–206. https://doi.org/10.1080/15592294.2017.1389361

Zbieć-Piekarska, R., Spólnicka, M., Kupiec, T., Parys-Proszek, A., Makowska, Ż., Pałeczka, A., Kucharczyk, K., Płoski, R., Branicki, W. (2015) Development of a forensically useful age prediction method based on DNA methylation analysis. Forensic Sci. Int. Genet. 17, 173–179. https://doi.org/10.1016/j.fsigen.2015.05.001

Zhang, Q., Vallerga, C.L., Walker, R.M., Lin, T., Henders, A.K., Montgomery, G.W., He, J., Fan, D., Fowdar, J., Kennedy, M., Pitcher, T., Pearson, J., Halliday, G., Kwok, J.B., Hickie, I., Lewis, S., Anderson, T., Silburn, P.A., Mellick, G.D., Harris, S.E., Redmond, P., Murray, A.D., Porteous, D.J., Haley, C.S., Evans, K.L., McIntosh, A.M., Yang, J., Gratten, J., Marioni, R.E., Wray, N.R., Deary, I.J., McRae, A.F., Visscher, P.M. (2019) Improved precision of epigenetic clock estimates across tissues and its implication for biological ageing. Genome Med. 11, 54. https://doi.org/10.1186/s13073-019-0667-1